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Effects of Oral Glucose on Exercise Thermoregulation in Men After Water
Immersion

ALAN S. DEARBORN ,* ANDREW C. ERTL,** JOHN E. GREENLEAF, PAUL R. BARNES ,*

CATHERINE G. R. JACKSON ,t AND JENNIFER L. B RECKLER*

Ames Research Center

Summary

To test the hypothesis that elevated blood glucose

would attenuate the rise in exercise rectal temperature,

six men age 35 + S. D. 7 years participated in each of

three trials preceded by 4-hr water immersion to the neck:

(1) 2.0 g/kg body wt of oral glucose (33.8% wt./vol.) was

consumed followed by 80 min controlled rest (Glu/Rest),

and 70 min horizontal supine cycle exercise at 62.8%

+S.E. 0.5% (1.97 + 0.02 L/min) of peak 02 uptake fol-

lowed by 10 min recovery (2) with (Giu/Ex) and

(3) without prior glucose (No Glu/Ex). Blood samples
were taken at -25, at 0, 15, 45, and 68 min of exercise and

after + 10 min of recovery for measurement of hemo-

globin, hematocrit, and blood glucose. Both mean skin

(Tsk) (from six sites) and rectal temperatures (Tre) were

monitored continuously. Sweat rate was measured by

resistance hygrometry. The mean % APV for the exercise
trials was -12.2 + 2.1%. Mean blood glucose for the

Glu/Ex trial was higher than that of the No Glu/Ex trial

(108.4 + 3.9 and 85.6 + 1.6 mg/dl, respectively, P < 0.05).

At the end of exercise, Tsk for the Glu/Ex trial was lower
than for No Glu/Ex (32.0 + 0.3 and 32.4 + 0.2°C, respec-

tively, P < 0.05); Tre for the Glu/Ex trial was lower than

for No Glu/Ex (38.22 _.+0.17 and 38.60 + 0.11 °C, respec-

tively, P < 0,05); and forearm sweat rate for the Glu/Ex

trial was lower than for No Glu/Ex (0.34 + 0.04 and

0.43 :t: 0.04 g/cm 2, respectively, P < 0.05). These data

suggest that elevation of blood glucose prior to horizontal

exercise following hypohydration attenuates the increase

in body temperature without altering heat production or

exercise hypovolemia.

Introduction

Before examining the effects of a particular perturbation

on a system, whether mechanical or biological, it is

important to consider what the normal or predictable

responses to a primary stimulus are. Following this, one

*San Francisco State University, San Francisco, California.
**University of California at Davis, Davis, California.
i"University of Northern Colorado, Greeley, Colorado.

may consider the application and probable result of a sec-

ond stimulus delivered with the first; so it is with work/

exercise experimentation on humans. The first part of the

following work is focused on reviewing pertinent phys-

iological responses to exercise stress under controlled

environmental conditions. Several body systems interact

during exercise to maintain homeostasis and this integra-

tion will be emphasized. Within this will be some discus-

sion of the effects of drinking prior to and during exercise

of carbohydrate beverages on thermoregulatory and car-

diovascular responses. The remainder of this paper con-

tains sections on the proposed test procedure, the results

of those experiments, and finally a discussion of the sig-
nificant results.

Review of Literature

Introduction

Many body regulatory functions are challenged to main-

tain homeostasis while optimizing efficiency during
extended periods of exercise. Two functions so affected

are metabolism and thermoregulation which are distinct

yet interactive. For example, as exercise intensity
increases, metabolism must also increase to meet skeletal

muscle substrate needs. As metabolism increases, so does

the production of metabolic heat. Heat may be transferred

to the environment via four pathways: radiation, convec-

tion, conduction, and evaporation. The first two are con-

tinuous and non-regulated by the body but may be

affected by clothing; conduction and evaporation are

mediated by changes in skin blood flow, to conduct heat

from working muscles to the skin and respiratory system,

and by sweating, respectively. Greater emphasis is placed
on evaporation to moderate increases in core temperature

as the environmental temperature increases. The heat loss

possible via sweating is about 2,426 Jig (Wenger, 1972).

Exercise induces an increase in core temperature which is

proportional to the exercise load (Nielsen, 1938;
Robinson, 1949; Nielsen and Nielsen, 1962). Further-

more, the core temperature response is more predictable
when related to the relative intensity of work, or percent



reduced,andthisshouldreducetheroleofevaporationfor
regulatingtemperatureinhypohydratedindividuals.The
reductioninbothtotalbodyandlocalsweatrateatagiven
coretemperatureduringexerciseisprogressiveasthe
levelofhypohydrationincreases(Sawkaetal.,1985,
1989;Sawka,1992).

Regulation of Plasma Volume

The physiological mechanism by which hypohydration

directly or indirectly mediates a reduction in sweat rate

has yet to be proven, but it is probably related to the way

in which exercise and thermoregulatory reflexes affect the
distribution of available blood volume, as well as the

affects of exercise on plasma volume and plasma tonicity.

Local regulation of capillary filtration and absorption is

considered to be governed by the balance of colloid

osmotic and hydrostatic pressures between the intravascu-

lar and interstitial spaces (Starling, 1896; Landis and

Pappenheimer, 1963). The Starling formula in its simplest

form expresses this equilibrium:

Rate of filtration : kf -(Pc - _c), where

kf = capillary filtration coefficient

Pc = effective hydrostatic mean tran-
scapillary pressure

FIc = effective colloid osmotic mean
transcapillary pressure

Working with these local "Starling Forces" is the more

complex ability of the body to modulate regional blood
flow through alterations in vascular smooth muscle tone.

This will have a net effect on capillary blood flow, either

increasing or decreasing capillary hydrostatic pressure and

thereby favoring local and regional vascular filtration or

absorption, respectively (Mellander and Johansson, 1968;
Mellander, 1978). Furthermore, Cohn (1966) showed,

with pharmacological manipulation, that systemic changes

in the capillary pressure index were inversely related to

plasma volume (PV).

The exercise posture (supine; sitting; standing) is a major

consideration when discussing fluid balance because mov-

ing from sitting to supine and standing postures produces
isosmotic hemodilution and hemoconcentration, respec-

tively (Thompson et al., 1928; Waterfield, 193 l a; Fawcett

and Wynn, 1960; Eisenberg, 1963). The change of PV,

approximately 10-15%, is relatively stable after 20 min in

the new posture (Thompson et al., 1928; Tan et al., 1973).

Although hemoconcentration and hemodilution approach
stability by 20 min, complete stabilization of PV and its

constituents may take 40 to 60 min (Hagan et al., 1978).

The mechanism by which upright posture hemoconcen-

tration occurs is most likely related to changes in hydro-

static pressure in the lower limb capillary beds

(Waterfield, 1931 b). When one assumes an upright pos-
ture the increase in blood accumulation in the limbs,

approximately 500 ml (Gauer and Thron, 1965), initiates a

series of baroreceptor-mediated cardiovascular adjust-

ments designed to maintain venous return to the heart.

These adjustments result in tachycardia and vasoconstric-

tion with no change in venous tone (Rowell, 1983).
Because of the vasoconstriction there is reduced flow into

the limb capillary beds; but without venoconstriction, the

capillaries are exposed to venous back-pressure resulting

in increased hydrostatic pressure, plasma filtration, and

hemoconcentration (Hagan et ai., 1978; Rowell, 1983).

This situation is reversed after the body returns to the

original posture, presumably by reduction in venous pres-

sure and thereby a reduction in capillary hydrostatic pres-
sure which favors absorption. Unless a stable baseline

posture is established, conclusions drawn concerning the
effects of environmental or exercise stress on plasma vol-
ume or constituents could be erroneous and more accu-

rately reflecting a combination of postural responses and

experimental stresses. The time required for plasma equi-
libration must also be considered.

When posture is controlled, within the first 10 min of

cycle ergometer exercise there is hemoconcentration

related almost solely to a decrease in PV (Kaltreider and

Meneely, ! 940; Harrison et al., 1975; Greenleaf et al.,
1979a, b; Beaumont et al., 1981). The volume of plasma

filtered (typically 10-15%) is related to the relative inten-

sity of cycling (Diaz et al., 1979; Greenleaf et al.,

1979a,b; Senay et al., 1980). The initial loss of PV is pro-

portional to mean arterial pressure (MAP) which is
directly related to relative exercise intensity (Miles et al.,

1983). This relationship of PV and MAP during exercise

is predictable from the Starling model and cardiovascular
control mechanisms.

Cardiovascular Regulation During Exercise

With initiation of exercise there is a large decrease in vas-

cular resistance in the working muscles; there is also sys-

temic sympathetic stimulation and parasympathetic
withdrawal (Guyton et al., 1973; Sagawa et al., 1974).

Vasodilatation within the active muscle may lead to a
15-fold increase in blood flow which will occur with the

nerve input from the muscle area blocked (Barcroft and

Swan, 1953; Bevegard and Shepherd, 1967; Shepherd,

1967). Further, the level of vasodilatation, and therefore
the level of blood flow, is related to the intensity of work

(oxygen consumption) (Ekelund and Holmgren, 1967;
Hermansen, 1973); local concentration increases of K ÷,

PACJ_ I_._ANK trOT FN.MEL)
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I-I+, lactate, nucleotide breakdown products, or oxygen

deficiency might be involved (Skinner and Powell, 1967;

Mohrman and Sparks, 1973; Mellander, 1974).

Sympathetic stimulation affects the heart and peripheral

circulation; the combination of vagal withdrawal and

sympathetic stimulation increases heart rate and myocar-

dial contractility (Guyton, 1955; Sarnoff, 1955;
Braunwald et al., 1967; Cowley and Guyton, 1971 ). The

peripheral effects of sympathetic stimulation are constric-
tion of both arterial and capacitance vessels, and this

increase in tone is proportional to the intensity of exercise

(Duggan et al., 1953; Merrit and Weissler, 1959;

Bevegard and Shepherd, 1967; Shepherd, 1967). These

peripheral effects provide an approximately eight-fold
increase in arteriolar resistance and expel approximately

40% of the blood contained in capacitance vessels

(Mellander, 1960). Two areas affected by vast- and vent-

constriction are the skin and the splanchnic region. Resis-

tance to skin blood flow is initially increased, but as a heat

load develops with continued exercise this situation is

reversed (Bevegard and Shepherd, 1967; Shepherd, 1967).
This will be discussed later in more detail. Blood flow to

the kidney, spleen, liver, and intestines is markedly
reduced with exercise and may fall to 30% of control

(Radigan and Robinson, 1949; Rowell et al., 1966;
Castenfors and Piscator, 1967; Rowell, 1973; Clausen

et al., 1973; Clausen and Trap-Jensen, 1974). Again, the

increase in resistance and decrease in capacitance in these

organs is proportional to the relative intensity of exercise

(Rowell, 1974). These peripheral factors have a profound

effect on maintaining mean circulatory pressure, the main

driving force returning blood from the periphery to the

heart (Guyton et al., 1973), which exceeds the arterial

pressure decrease that would accompany the vasodilata-

tion in working muscles (Donald, 1967; Donald et al.,

1968; Bassenge et al., 1972, 1973).

Thus, sympathetic stimulation improves cardiac function

and mean circulatory pressure which promotes venous
return to the heart, and local vasodilatation in working

muscles reduces resistance to venous return. These factors

together can increase cardiac output four to six-times

normal during exercise, while modifications of these fac-

tors singly would produce only modest improvements in

cardiac output (Guyton, 1955). Cardiac output usually

appears to approach a plateau in less than a minute, and
this plateau level is related to the intensity of exercise.

These initial cardiovascular responses to exercise occur

rapidly resulting in elevated arterial pressure and
decreased vascular resistance within the working muscles;

these responses result in increased capillary pressure

leading to filtration of plasma into the muscle interstitial

space. After 10 min of exercise, the resulting PV plateau

is most likely the result of an increase in interstitial fluid

pressure produced by the plasma shift balanced by

increased tissue pressure resulting from muscle contrac-

tion (Guyton and Coleman, 1968; Smith et al., 1976).

Other factors aiding early PV stabilization are elevated

plasma osmolality, and fluid absorption from tissue with

reduced capillary pressure such as the viscera and non-
working muscles (Lundvall et al., 1972; Rowell, 1974;

Bennett and Rothe, 1981).

Thermoregulatory Control Mechanisms

As exercise continues the developing heat load engages

thermoregulatory reflexes producing vasodilatation

(Drappatz and Witzleb, 1970; Johnson et al., 1974;

Johnson and Rowell, 1975) which results from stimulation

of sympathetic active vasodilater nerves innervating arte-

rioles in nonacral (limbs and trunk) skin. The threshold

internal temperature for vasodilatation appears to be

related to the relative exercise intensity (Taylor et al.,
1988; Mack et al., 1991; Smolander et al., 1991); the

variation in threshold from moderate to heavy work is

about 0.8°C (Johnson, 1992). The exercise-induced

upward shift in threshold temperature for vasodilatation is
due solely to a delay in activation of the vasodilator sys-

tem rather than to blunting of vasodilatation by the ele-

vated vasoconstrictor activity responsible for cutaneous

vasoconstriction at the initiation of exercise (Kellogg

et al., 1991a,b). The presence of two mechanisms for

regulating cutaneous blood flow during exercise evoke

questions concerning coordination and control; their exis-

tence allows for a more graded and flexible response to
differences in demand for blood flow by working muscle

while maintaining some level of thermoregulatory control
via modulations in skin blood flow.

The vasodilatation induces large increases in skin blood

flow (SKBF) in 5-10 min (Johnson, 1992). As internal

temperature rises with continued exercise, the rate of

increase in SKBF is reduced reflecting only modest
increases in cutaneous vasodilatation (Kamon and

Belding, 1969; Johnson and Rowell, 1975). Skin blood

flow eventually plateaus at approximately 50% of

maximal SKBF responses at rest to an equivalent rise in

internal temperature (Johnson, 1992). With high environ-

mental temperature and/or humidity, where thermoregula-

tory steady-state is impossible, there is an abrupt
reduction in the rate of increase of SKBF at an internal

temperature of about 38°C, and little or no further vasodi-

latation while internal temperature rises to 39°C

(Brengelmann et al., 1977). This apparent upper limit of

SKBF during exercise appears to be due to attenuation of

increasing active vasodilator activity as opposed to

increasing sympathetic vasoconstrictor activity blunting

4
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(Kenneyetal.,1991;Kelloggetal.,1991b).Itwould
appearthenthatasimilarmechanismisinvolvedincon-
trollingboththelowerandupperlimitsforSKBF.

Theexpectedeffectofincreasedskinbloodflowonthe
cardiovascularsystem,asproposedbyKroghanddevel-
opedbyRowell,isashuntingofbloodawayfromthe
"musclepump"toaregionof "greatcapacitance"result-
inginperipheralbloodpoolingandreducedvascular
returntotheheart.Thisresponsehasbeentermed
"cardiovasculardrift"andincludesdeclinesinarterialand
pulmonarypressures,lowercentralvenouspressure,and
reducedstrokevolume(Krogh,1912;Ekelundand
Holmgren,1967;Rowell,1974,1993).Reductioninven-
tricularfillingpressureleadstoalteredstimulationof
atrialbaroreceptorsresultinginincreasedsympathetic
outflow,thusproducingelevationsofheartrateandvaso-
constrictioninthesplanchnicandrenalcirculationsand
possiblyinactivemuscletomaintaincardiacoutput
(Rowell,1974,1983,1993).Baroreceptorstimulation
mayalsoleadtoareductioninthelevelofvasodilator
toneresultinginadecreaseintherateofriseinSKBF
(Kenneyetal.,1991;Kelloggetal.,1991a;Rowell,
1993).

Thereisamoderateprogressivedeclineinplasmavolume
withcontinuousexercisebeyondtheinitiallossof~10%
foundtypicallywithinthefirst10min,andunderextreme
conditionstheupperlimitappearstoapproach20%
(Harrison,1985).SuchadeclineinPVinconcertwith
whole-bodydehydrationwill inevitablyplacegreater
strainonthedistributionofbloodbetweenworkingmus-
cleandskinleadingtomoregreatlyimpairedSKBFand
furtherreductionsindryheatexchangeandconsequently
ahigherinternaltemperature.Experimentsproducing
isosmotichypovolemiahaveshownincreasedcoretem-
peratureandadeclineinSKBFand/orsweatrate(Nadel
etal.,1980;Fortneyetal.,1981a,b).Fortneyandcol-
leagues(198lb)haveproposedthatisosmotichypo-
volemiacouldreducesweatrateviareducedcardiac
fillingpressureandalteredactivityofatrialstretchrecep-
tors.Thesereceptorshaveafferentneuralprojectionsinto
thehypothalamus(Gaueretal.,1970).Suchmodifications
couldaffectthefunctionofhypothalamicneuronsassoci-
atedwiththecentralcontrolof sweating rate.

In addition to progressive hypovolemia, sustained exercise

results in progressive hyperosmolality and hypernatremia.

The magnitude of rise of plasma osmolality is dependent

on the intensity (Costill et al., 1974; Senay et al., 1980)
and duration (Kolka et al., 1982) of exercise. The bulk of

the plasma hyperosmolality is attributed to the increase in

plasma Na ÷ ion concentration [Na +] (Greenleafet al.,
1977, 1979a; Convertino et al., 1981). Potassium ion con-

centration [K +] also increases proportionally more than

[Na+], reflecting an actual increase in content, probably

released from contracting muscle, perhaps as a result of

increased glycogenolytic activity (Kozlowski and Saltin,

1964; Kilburn, 1966; Harrison, 1985). Experimentally
induced hyperosmolality and hypernatremia have been

linked to elevated exercise core temperature beyond that

of control groups (Greenleaf et al., 1974, 1976; Fortney et
al., 1984).

Since sweat is normally hypotonic to plasma (Kirby and

Convertino, 1986), whole body osmotic pressure should
increase during extended exercise. It has been shown that

hypohydration, whether by exercise or thermally induced,

leads to an unequal distribution of fluid loss from the

intracellular and extracellular spaces. In the early stages

of hypohydration, the majority of the deficit comes from

the extracellular space but, as water loss continues, a

greater percentage comes from the intracellular space
(Costill et al., 1976; Nose et al., 1983; Durkot et al.,

1986). Nose and colleagues (1983) examined the distribu-

tion of water loss across tissue spaces and organs and
found that the majority of fluid redistribution occurs in the

intra- and extraceilular compartments of muscle and skin.

The brain and the liver showed no significant loss in water

content. These findings indicate that the areas of greatest

perfusion during exercise, namely the skin and muscle,

provide the largest water reservoir for fluid loss through

sweating; secondly, the principles of osmotic equilibrium
are borne out in that fluid movement from the intracellular

space becomes an ever larger factor as plasma osmotic

pressure increases with continued exercise. Nose and

colleagues reiterated that the rise in plasma osmolality

provides an osmotic driving force pulling fluid from the

intracellular space and defending the plasma volume of

hypohydrated subjects (Nose et al., 1988).

It has been proposed that plasma hyperosmolality effects

sweating and temperature regulation centrally through

changes in tonicity of the extracellular fluid bathing
regions of the hypothalamus, the so-called "osmotic sen-

sor" (Senay, 1979; Kozlowski et al., 1980; Silva and

Boulant, 1984). It's also possible that interstitial hyper-

tonicity could locally inhibit fluid availability to the
eccrine sweat gland (Greenleaf and Castle, 1971; Nielsen

et al., 1971; Sawka, 1992). It has been shown experimen-

tally that sweat rate is reduced when plasma osmolality is

increased, even when isovolemia is maintained (Nielsen,

1974; Harrison et al., 1978; Fortney et al., 1984). Fortney

and colleagues (1984) further indicated that this
"... hypertonic effect (is) a shift in the threshold for

sweating," and this shift "... may be due to mechanisms

similar to those which shift the vasodilatory threshold."

From the same study (Fortney et al., 1984) there is some
evidence that cutaneous blood flow is reduced across



Carbohydrate Ingestion and Thermoregulation

Besides the performance enhancing effects of carbohy-

drate ingestion before and during exercise, recent animal

research has suggested a thermic effect as well. With dogs

exercising on a treadmill, restriction of glucose as a

metabolite via insulin induced hypoglycemia and inhibi-

tion of glucose utilization by 2-deoxy-d-glucose led to

increases in the change of rectal temperature (ATre)
beyond that of control (Turlejska and Nazar, 1977). The
authors concluded that since both treatments reduce the

availability of glucose for the CNS, metabolism would be

enhanced to produce usable metabolic precursors with

increased heat production as a by-product. In a follow-up

study by Kruk and colleagues (1987), exercising dogs

were infused with glucose, soybean oil to elevate free

fatty acid (FFA) levels, and saline as control. As in the

previous study, indices of metabolism were monitored

including Tre and muscle temperature (Tin); oxygen

uptake and plasma osmotic changes were also studied.

Glucose treated dogs showed significantly lower Tre and
T m than control; FFA treated dogs showed the largest

temperature increases. 02 uptake was likewise reduced

for the glucose treatment. The respiratory exchange ratio

(RER) was significantly elevated for the glucose treat-

ment indicative of high carbohydrate utilization; RER
declined for the FFA treatment and control indicative of

reduced glucose availability for metabolism and greater

emphasis on FFA. Plasma osmolality rose moderately
over the course of exercise with no difference between the

treatments. The researchers concluded that high glucose

availability led to reduced metabolism and lower heat
production. Since previous work in the same laboratory

indicated that high glucose availability led to reduced cat-

echolamine concentrations during exercise (Kozlowski

et al., 1981, 1983), one suggested cause for the observed

decline in metabolic rate was a probable reduction in the

secretion of catecholamines during the glucose treatment.

A similar relationship between glucose and catecholamine
concentrations has been observed recently (Hamilton

et al., 1991).

From this review it should be evident that a complex

interaction exists between whole-body water volume,

plasma volume and plasma tonicity in maintaining opti-
mal thermoregulation and their impact on sweat rate and

skin blood flow. Animal data imply that there may be a

metabolic factor as well, perhaps relating to changes in

substrate availability and how this may affect sympathetic

tone, heat production, and possibly the central control of

temperature regulation. Therefore, the purpose of this

study will be to determine the effect of elevated blood

glucose, through the consumption of a concentrated
glucose-containing beverage, on thermal responses to

exercise in hypohydrated human subjects. Skin and core

temperature changes will be of greatest interest, with addi-

tional attention given to possible alterations in sweat rate

and skin blood flow. Metabolism will also be indirectly

monitored via on-line respiratory sampling, as well as

blood-born constituents, to observe any variations pro-

duced by glucose consumption.

Material and Methods

Subjects

The subjects for this study were 6 normal healthy male

volunteers age 35 + SD 7 years (table 1) who were paid

for their participation. After obtaining their informed

consent, each subject received a complete physical exam-
ination including a medical history, standard lab tests, and

an electrocardiogram-monitored treadmill stress test at the

Palo Alto Medical Clinic. All experimental testing was

conducted in the Laboratory for Human Environmental

Physiology and Water Immersion Facility at Ames

Research Center by the primary investigator and trained
staff.

Procedure

After receiving medical clearance, the subjects took a

standard oral glucose tolerance test (OGTT) to screen for

pre-diabetic sensitivity to glucose; all were normal. Then

they performed one submaximal and two maximal short

duration exercise tests to determine their peak oxygen

uptake (peak VO 2, L/min). The highest mean value for
the two maximal trials was used to estimate the absolute

exercise load necessary to produce 60% of the peak _'O 2.
This load was then used for the two 70 rain exercise bouts

in the experimental phase.

Table 1. Subject anthropometry and physiological baseline data (mean -t- SD)

Age, yr Ht, cm Wt, k[
35+7 1782+5.9 78.5+6.0

Peak ox_,gen uptake, supine

L. min -1 mL • kg -1 • min -1

3.13 :t: 0.19 40.8 + 5.5

Plasma volume

mL mL. kg -i
3385 + 545 43 + 6

P,_GI_ IL&NK NOT I:K.MED 7



The experimental phase consisted of three 8-hr blocks

(fig. 1). Subjects arrived at 0645 hr in a fasted state. Each

had been asked to eat an evening meal on the previous

day (before 2200 hr) that was high in carbohydrate and

low in fat and protein (no red meat). Each subject urinated
and then was weighed. The composition of their breakfast

was approximately 2.0 g/kg body wt carbohydrate (CHO)

and 0.0 g/kg fat. The meal (tables 2 and 3) consisted of

237 ml fruit juice (Dole), 5-6 slices whole wheat bread

(The Original Oatmeal Baking Co.; Portland, OR 97209),

and whole fruit preserves (Sorrel Ridge 100% Fruit;

Sorrel Ridge Farm; Port Reading, NJ 07064). The subject

ate all of his food allocation by 0730 hr, and was allowed
to relax.

At 0755 hr the subject voided, was weighed in exercise
shorts, and escorted to the water immersion tank. By
0810 hr he was immersed to the neck in thermoneutral

(34.5°C) water, positioned supine and feet-down on a
submerged plinth, and secured loosely by chest and ankle

Treatment_

- Glucose / Exercise

- no Glucose/Exercise

07OO 08O0 Water

i ! Immersi°nPre Immersion

- Glucose/Rest

070O O8OO Water

1200 1230 1315 1425 1445 HOURS

Exercise

Pre J Recov I
-15 0 15 45 68 +10 MIN

1200 1230 1315 1425 1445

• Evans Blue injection

Glucose consumption -3o" Oral Glucose

i i Tolerance Test

Pre

-10 0 30 60 83 95

HOURS

+30"

180 MIN

Figure 1. Test protocols.

Table 2. Pre-experimental meal and glucose beverage (Dolce C) composition

Juice, ml Bread, slice Preserves, g Dolce C, ml

Carbohydrate, g 0.1 20.0 0.5 0.3

Protein, g 0 4.0 0 0
Kcal 0.6 100.0 2.2 1.4
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Table3.Meanfuelintake supplied by the pre-experimental meal and the glucose beverage (mean + SD)

Meal Dolce C

Glu/Rest No Glu/Ex Glu/Ex Glu/Rest Glu/Ex OGTI "a OGTT b

Carbohydrate, g 161.0+ 13.1 158.4+ 11.9 158.5+ 13.7 155.3+ 12.1 155.0+ 12.1 75.8+6.9 161.7+ 11.2

Protein, g 21.1 + 2.9 20.0 + 1.3 20.5 + 3.1 none none none none
Volume, ml none none none 459.6 + 35.7 458.2 + 38.8 224.3 + 20.5 478.5 + 33.2

Kcal 773.6_+63.4 757.8+51.2 760.8+71.8 636.7+49.5 633.9-+54.2 310.6+28.4 662.8+46.0

aOG'Iq" trial utilizing ! g/kg body wt. glucose.

bOGTr trial utilizing 2 g/kg body wt. glucose.

straps. A heating element suspended above the tank was

adjusted for comfort. A television and VCR were avail-

able for entertainment. The subjects remained in the tank

for four hr and stood just out of the water to void. Sequen-

tial urine volumes were pooled to determine total urinary

loss during immersion.

At approximately 1200 hr the subject voided a final time,

and then inserted a rectal probe thermistor to a depth of

12 cm. He was dried rapidly and lay on a gumey for

transport to the exercise laboratory in a adjoining building

where he was again weighed and returned to the gurney.

This pre-exercise weight was used for determining the

volume of glucose consumed by the subject prior to exer-

cise in the H20/Glu/Rest and H20/GIu/Ex trials. The sub-

ject rested supine on the gurney for at least 30 min prior to

the plasma volume determination (Hagan et al., 1978).

After returning to the gurney, an 18-gauge flexible nylon
catheter was inserted into a major vein in the antecubital

region of the subject's right arm by an experienced nurse.
All blood withdrawals and Evans blue dye injections were

made through this catheter. Then the subject was fitted

with six skin thermistors, a laser Doppler probe, ECG

electrodes, and three sweat measurement capsules. A
thermistor was also inserted into the ear canal as an auxil-

iary measure of core temperature to that of the previously

inserted rectal probe.

At 1245 hr environmental measurements including dry

and wet bulb temperature, barometric pressure, and

humidity using a psychrometer were made. At approxi-

mately 1250 hr the preliminary (pre) blood draw was
taken and 2.5 ml of Evans blue dye was injected for blood

volume determination. After a 10-min equilibration period

the post-Evans blue (post-E.B.) dye blood draw was

taken. If the experiment called for glucose he was assisted

to a sitting position and drank the beverage as rapidly as

possible (table 3). After two-thirds of the original volume
had been consumed, a 15-min timer was started (T-15). At

T-10 baseline heart rate (HR), blood pressure (BP), skin

(Tsk) and rectal ( Tre ) temperature, subcutaneous blood
flow volume and velocity, and pre-exercise sweat rate

data were recorded. At T-5 measurement of respiratory

gases and ventilation was initiated. At TO the pre-exercise
baseline blood sample was taken and values for HR, BP,

Tsk, Tre, Laser Doppler parameters, and sweat rate were
recorded.

Then the subject be.gan to exercise at approximately

60% of their peak VO 2. Exercise was maintained for
70 min with continuous monitoring of HR, Tsk, Tre, sub-

cutaneous vascular changes, and sweat rate. Oxygen

uptake was monitored during the first 20 min and final
25 min of exercise. Blood samples were taken at 15, 45,

and 68 min of exercise, and after 10 min of recovery

(Rec) while still supine. Heart rate and BP were recorded
at 10 min intervals. Systolic (SBP) and diastolic (DBP)

pressure readings were used to calculate pulse pressure
(PP) and mean arterial pressure (MAP) by standard for-
mulae: PP = SBP - DBP; MAP -- DBP + 1/3 PP.

The catheter was withdrawn after the Rec blood sample.

After Rec measurements had been recorded, the subject

was towel dried, weighed, offered water, asked how he

felt, rested awhile, and then excused from the facility.

Oral Glucose Tolerance Test

Preliminary glucose tolerance testing of the subjects pre-
ceded their participation in the experimental trials. The

protocol followed was a modification of a standard OGTT
(Anonymous: 1969) (fig. 1). Each subject consumed

2.0 g/kg body weight of the beverage (33.8% glucose,
wt./vol.), Dolce C; Hopping Bottling Co., Inc.; Sunnyvale,

CA 94086) (table 3). The original glucose quantity

ingested was 1.0 g/kg body weight, but results from four

subjects showed that this quantity would not produce sus-
tained elevation of blood glucose in resting, aerobically-

trained individuals. A number of investigators found an

attenuation in blood glucose elevation after glucose

consumption in trained subjects (Bjorntorp et al., 1979;
Le Blanc et al., 1979; Heath et al., 1983; Seals et al.,

1984). The design of this study required significantly

elevated blood glucose during exercise in the Glu/Ex



groupoverthatof theNoGlu/Exgroup.Therefore,the
dosageofglucoseintheOGTrandexperimentaltrials
wasincreasedto2.0g/kg.Afterbeverageconsumption
thebloodglucoselevelsweremonitoredovera3hr
period.

Eachsubjectarrivedatthefacilityatleast6hrpostpran-
dial.Thesubjectwasweighedandthenplacedonagur-
neyinahorizontalsupineposture.Aftera30min
equilibrationperiodatefloncatheterwasinsertedintoan
antecubitalvein.A bloodsamplewastakenandthen
2.5mlofEvansbluedyewasinjected.After10mina
secondsamplewastaken.Thisdye-labeledsamplewas
usedtodeterminethesubjects'ambulatoryplasmavol-
ume,thepre-immersionbaselinevalue.

Thesubjectwasassistedtoasittingpostureandaskedto
drinkthebeverageasquicklyaspossible.After two-thirds
of the volume had been consumed, the clock was started.

Blood samples were taken at 30, 60, 83, 95, and 180 min

after drinking. The first four sample times were selected
to coincide with blood draws during the Exercise Phase of

the experimental trials, and the 180 min draw was part of

the clinical OGTI' protocol (fig. 1). After completion of
the final draw, the catheter was removed and the subject

was excused.

Preliminary Exercise Testing

In most cases the subjects came to the laboratory on three

separate occasions prior to the study for initial submaxi-

mal cycle ergometer familiarization and two peak "(,'O2
test sessions. All exercise was done on a Quinton

Imaging/Ergometer Table (Quinton Instruments Co.;

Seattle, WA 98121) with the subjects in a horizontal,

supine posture. They were instructed on efficient peddling
to minimize discomfort in the legs. Ventilation and

expired respiratory gas concentrations were monitored by

open-circuit, indirect calorimetry employing an on-line

analysis system. Expired gas flowed through a Rudolph

valve with an attached model S-301 Spirometer

(Pneumoscan), its composition measured with a

model N-22 02 sensor and model S-3A1 02 analyzer,
model P-61B CO2 sensor and model CD-3A CO2 ana-

lyzer (Ametek Applied Electrochemistry; Pittsburgh, PA

15238), and oxygen uptake calculated with a Vista com-

puter interface and software (Vacumed; Ventura, CA
93003), and an IBM (model AT) PC. The gas analyzers

were calibrated with standard laboratory gas prior to each

data collection period. Heart rate was monitored with a

three-lead ECG using a Hewlett Packard cardiotachometer

(model 78905A) and ECG module (model 78203C;
Hewlett Packard; Medical Products Group; Waltham, MA

02154). Blood pressure was monitored by the ausculatory

method using a Riva-Rocci cuff and sphygmomanometer.

Sub-maximal and maximal test protocols began with a

five min monitored rest period. The subject exercised at a

load of 400 kpm for five min at or above 70 rpm which he

could monitor via a display positioned at eye level. At the

beginning of the fifth minute blood pressure was taken
and heart rate recorded. During the submaximal test, the

load was then increased to 900 kpm to elicit an 02 uptake

of approximately 50% of their peak. Since the subject's

peak _'O 2 was unknown during the submaximal familiar-
ization phase, his age predicted maximum heart rate and

heart rate reserve were used for determining the 60% of

peak ceiling for that protocol (Fletcher et al., 1990):

Max HR, 60% = ((220 - age) - rest HR) x 0.6 + rest HR

The subject exercised at this load for 2 min with BP and

HR measured during the second minute. The load was

then increased by I00 or 200 kpm to produce a HR of

roughly 60% of their predicted maximum. This load was
maintained for 2 min with BP and HR measured during

the final minute. The load was then lowered to 400 kpm

allowing the subject to cool down until his heart rate
reached or fell below 120 beats/min.

During the first peak test the initial 400 kpm load was fol-
lowed by the load which had elicited 60% of the predicted

maximum heart rate during the submaximal familiariza-
tion ride. This load was maintained for 2 min and was fol-

lowed by an increase of 200 kpm which was again
maintained for 2 min. A third load increase of 200 kpm

followed and, in most cases, the subjects failed to main-

tain at least 60 rpm for the full 2 min and ceased pedaling.

If a subject completed this third load, a fourth 200 kpm
increase ensued (Greenleaf et al., 1989). Blood pressure

and HR were monitored during the 2nd min of each load.

A second peak test was done some days later to verify the
results of the first.

Blood Sampling, Analysis, and Requirements

Blood sampling was done via an 18-gauge intravascular

teflon catheter (Quik-Cath; Baxter Healthcare Corp.;

Deerfield, IL 60015) in an antecubital vein inserted by an

experienced nurse (NursesNetwork, San Jose, Calif.). The

catheter was kept patent with 2 cc of 100 units/ml hep-
arinized saline infused between blood draws. The

sequence was withdrawal of 2.5 ml which was discarded,

drawing the appropriate sample volume, and then the
infusion of the heparinized saline. During the OGTT

protocol the -10 min draw was 8 ml and the 0 min draw
was 6 ml. The remaining samples were approximately

2 ml. Total blood required was approximately 24 ml. The

pre draw of the Exercise Phase was 13 ml, and the post-
E.B. volume was six ml. The 0 min, Exercise, and Rec

volumes were seven ml. Total blood required for each
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experimentaltrialwas54ml,andtotalbloodforthestudy
was186ml/subject.

SixmlofbloodfromthePre-E.B.sampleandtheentire
Post-E.B.samplewereplacedinlithiumheparintubesand
spuninaSorvall,modelRC2-B,refrigeratedcentrifugeat
2,500rpmfor20min.Theplasmawasdrawnoff and

frozen for later determination of plasma volume. For all

draws, except the Post-E.B. sample, 1.5 ml whole blood

were placed in a tube with potassium oxalate and sodium

fluoride (glycolytic inhibitors), spun at 2,500 rpm for

20 min, and the resulting plasma was analyzed for glucose

using a Cobas Mira analyzer (Roche Diagnostic Systems,

Inc.; Nutley, NJ 07110-1199); hexokinase coupled with

glucose-6-phosphate dehydrogenase produced NADH

which indicated the concentration of glucose (Barthelmai
and Czok, 1962; Anonymous, 1976).

One ml of blood from each sample was placed in an

EDTA tube, gently tilted to minimize lysis, and analyzed
for hemoglobin (Hb) and hematocrit (Hct). Blood Hb was

measured using the Coulter Diluter 1I and Hemoglobi-

nometer (Coulter Electronics; Hialeah, FL 33010), and

Hct by the microcapillary technique using an International

Microcapillary Reader (model CR; International Equip-

ment Co.; Needham Heights, MA 02194). Calculations of

percent change in plasma volume were made using the
method of Dill and Costill (1974).

Three ml of blood were allowed to clot. The clot was

swept and the tube spun at 2,500 rpm for 20 min. Serum

was withdrawn and frozen in cryogenic tubes for later

analysis of sodium and potassium concentration using

ion-specific electrodes (Beckmann), and osmolality by

freeze-point depression (Advanced Digimatic Osmometer
Model 3DII, Advanced Instruments, Inc., Needham

Heights, MS 02194).

Plasma Volume Determination

Plasma volume (PV) was measured post-immersion and

again prior to the OGTI" utilizing the Evans blue dye

(T- 1824; David Bull Laboratories; New World Trading

Corp.; Longwood, FL 32750) dilution technique (Young

et ai., 1973). A six mi pre sample was used as the plasma

blank. Then 2.5 ml of a 0.1% dye solution (T-1824 in iso-

tonic saline) was injected. After a 10-min equilibration

period, six ml of blood were drawn. The pre- and post-

injection samples were spun, their plasma removed, and

the dye subsequently recovered from the plasma by chro-

matography (O'Brien et al., 1968) using custom-blown
columns containing wood cellulose (Solka Floe; James

River Corp.; Berlin-Gorham Group; Berlin, NH 03570) as

the ion-exchange medium. Spectrophotometric analysis

yielded the optical density of test solutions allowing cal -

culation of PV by application of the Beer-Lambert law:

V.St
Plasma Volume =

T. D- 1.03

where:

V =

D =

St =

T =

1.03 ----

Volume T-1824 injected (ml)

Dilution of standard (typically 1:250)

Absorbance of standard (O.D.)

Absorbance of test; subtract plasma blank

(O.D.)

Factor introduced to correct for slow dye

uptake by the tissues (dimensionless)

Thermoregulation Variables

Body temperatures were recorded using series 400 ther-

mistors (Yellow Springs Instruments Co., Yellow Springs,

OH 45387). Skin temperature was monitored at six sites:

chest, back, upper arm, forearm, thigh and calf; the sen-

sors were attached to the skin with prototype optimum air-
flow holders (Greenleaf, 1974). Core temperature was

measured as rectal temperature ( Tre ) at a depth of 12 cm
(Nielsen and Nielsen, 1962). A multisite data logger,

model SQ32-2YS/8YS/IVIHR Squirrel (Science/

Electronics Inc., Miamisburg, OH 45342), was used for

continuous monitoring of sensor inputs. Mean skin

temperature ( Tsk ) (Hardy and DuBois, 1938; Grcenlcaf
and Castle, 1972) was calculated:

Tsk = chest(0.19) + back(0.20) + U. arm(0.06)
+ F. arm(0.13) + calff0.21) + thigh(0.21)

Sweat rate was measured at three sites: arm, forearm, and

calf. Capsules at these sites were attached via vacuum
lines to a resistance hygrometer (Spaul, 1983) with sen-

sors from Thunder Scientific, Albuquerque, NM. Room

air was used as a reference. Relative humidity and tem-

perature were measured at each site. The specific volume

of air (SVA, L/g dry air) was estimated, with relative

humidity and temperature values from the reference line,

from a psychrometric chart (Chambers, 1970). Sweat rate

(IVlsw) at the three sites was calculated:

Va(WoatWi.)
Q[SW

(Asw)/SVA)
Msw = sweat rate, g. cm -2- min -1

V a = volume flow rate, L/min
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Wout = absolutehumidityratioleavingcapsule,lb
H20/lbdryair

Win = absolutehumidityratioofcontrol,IbH20/Ib
dryair

Asw = areaofcollectioncapsule(3.14cm2)

SVA = specificvolumeofair,L/gdryair

PeripheralbloodflowwasmeasuredwithaLaserFlo
bloodperfusionmonitor(modelBPM403A,TSIInc.,
StPaul,MN55164);theprobewasattachedtothesub-
ject'stempleandsecuredwithsurgicaltape.Monitored
parameterswerebloodvelocity(Hz-102),bloodvolume
(Hz• 102),andbloodflow (ml • min -1 • 100g -1 tissue).

Statistical Analysis

The data were analyzed using a two-way (treatment ×

time) analysis of variance (ANOVA) with repeated mea-

sures. Separate ANOVAs were calculated for each depen-
dent variable. The conservative Greenhouse-Geiser

adjustment factor was used to counter the inherent
correlation of repeated measurements. Significant effects
between treatments and at individual time intervals were

determined by contrast analysis (SuperANOVA, Abacus

Concepts, Berkeley, Calif.). Data are expressed as

mean + SE. Significance was set at P < 0.05.

Results

Oxygen Uptake, RER, and Blood Glucose Responses

Oxygen uptake was not significantly different between the

two exercise groups (fig. 2, upper panel). At 14 rain of

exercise "v'O2 was 1.95 + 0.08 (No Glu/Ex) and
1.93 + 0.03 L/min (Giu/Ex) (62.2 :t=1.8 and 61.8 + 1.1%

of "_O2 max, respectively), and remained relatively con-
stant for the remainder of exercise ending with values of

2.02 + 0.05 and 2.00 + 0.05 L/min (64.6 + 1.8 and

63.9 _+1.1% of _'O 2 max, respectively).

The respiratory exchange ratio was not different between

the two groups during exercise (fig. 2, middle panel). At
0 min the RER for the Glu/Ex group was 0.84 + 0.03,

while for the No Glu/Ex and Glu/Rest groups it was

increased (P < 0.05) to 0.91 + 0.02 and to 0.90 + 0,03,

respectively. The RER for the two exercise groups then
rose to an identical value of 1.00 + 0.01 at 14 min of exer-

cise (P < 0.05), and then remained elevated and parallel
for the remainder of exercise with the No Glu/Ex group

showing a slightly greater depression at 70 min. The

Glu/Rest RER showed a significant (P < 0.05), linear rise
to 1.03 + 0.03 at 70 min.

Blood glucose (fig. 2, lower panel) was different between

the exercise groups; at -25 min there was no difference

between the groups, but by 0 min the Glu/Rest and

Glu/Ex values were both elevated significantly (P < 0.05)

above their control values (105 + 5 and 118 + 5 mg/dl,

respectively), and the No Glu/Ex concentration was sig-

nificantly (P < 0.05) lower than the other two at

92 + 2 mg/dl. Blood glucose for the No Glu/Ex group

remained significantly lower than that of the Glu/Ex for
the entire exercise period (P < 0.05); end exercise values

were 81 + 3 and 99 + 4 mg/dl, respectively. There was a

significant (P < 0.05) decline in No Glu/Ex blood glucose
over the exercise period with return to control

(91 +4 mg/dl) after 10 min of recovery. The Glu/Rest and

Glu/Ex groups had similar glucose curves over the 70 min

exercise period; however, after 10 min of recovery the

blood glucose values were very different (101 + 13 and

135 + 7 mg/dl, respectively).

Cardiovascular Responses

Heart rate was similar for the two exercise groups (fig. 3,

upper panel). In addition to a rapid rise by 10 min, both
curves exhibited a continued linear increase during exer-

cise: from the 10 min point the No Glu/Ex rate had risen

by -30 beats/min, and the Glu/Ex rate by -21 beats/min

by the end of exercise. At Rec, both groups' HR had
decreased similarly, yet were still elevated significantly

(P < 0.05), by 23-29 b/min, above control.

Systolic and diastolic blood pressure responses were not
significantly different between the two exercise groups

(table 4). Systolic pressures increased significantly

(P < 0.05), peaked at 20 min (173 + 8 and 174 + 7 mmHg,
No Glu/Ex and Glu/Ex, respectively), and were relatively

stable for the remainder of exercise. Diastolic pressures

rose similarly, but then declined significantly (P < 0.05) to
below control values for both groups during exercise.

Diastolic pressure for the No Glu/Ex group at R + 10 was
still reduced below the 0 min value. Glu/Rest group sys-

tolic and diastolic pressures were relatively constant.

Pulse pressure rose significantly (P < 0.05) with the initia-
tion of exercise and was followed by an extended plateau

for the duration of exercise in both groups. Pulse pressure

did not vary significantly over the Glu/Rest group.

Mean arterial pressure (fig. 3, lower panel) for the two

exercise groups increased significantly (P < 0.05) by
10 min of exercise, then declined steadily to a level

~10 mmHg above the 0 min value by the end of exercise.
At R + 10 the Glu/Ex MAP had returned to control, but

the No Glu/Ex MAP was lower (P < 0.05) than the 0 min

value, and was also lower (P < 0.05) than the MAP for the

Glu/Rest and Glu/Ex groups.
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Water Balance

Body weight changes occurring as a result of water

immersion and glucose consumption followed by exercise

or rest, reflect changes in total body water. Pre and post-

immersion body weights did not differ significantly for

the three groups over time (table 5). There was a differ-

ence (P < 0.05) in body weight between the two condi-

tions for each of the groups. Urine volume during the 4-hr

water immersion was not significantly different between

the three groups. After correcting post-exercise body

weight of Glu/Rest and Glu/Ex groups for the volume of

glucose consumed, there was no difference in post-

exercise body weight between No Glu/Ex and Glu/Ex.

Loss of weight during exercise for the two exercise

groups was significant (P < 0.05). The corrected change in

body weight of -1.30 + 0.04 kg for No Glu/Ex, and

-1.37 + 0.17 kg for Giu/Ex corresponded to body weight

losses of 1.7 and 1.8%, respectively.

Hemoglobin, Hematocrit and Plasma Volume

Hemoglobin concentration did not differ between the

exercise groups (table 6). Within the first 15 min of exer-

cise there was an increase (P < 0.05) in Hb, and no change

over the following 55 min of exercise. There was a slight

increase (P < 0.05) in Hb for No Glu/Ex between -25 min

and 0 min over that of the Glu/Rest group. There was a
similar increase (P < 0.05) in Hb for the Glu/Ex group

during the same pre-exercise period. Both exercise groups
were still above (P < 0.05) control values after 10 min of

recovery, and significantly different (P < 0.05) from
Glu/Rest.

Hematocrit was significantly different (P < 0.05) between

the two exercise groups at 15 min and 45 min (table 6).

After rising significantly within the first 15 min of exer-

cise, Hct was unchanged over the remainder of exercise

for both exercise groups. At R + 10, both exercise groups'

Hct remained elevated (P < 0.05) above their 0 min levels.

All three groups showed a small increase in Hct during

the -25 to 0 min interval; the rise in Glu/Ex was signifi-

cant (P < 0.05).

The calculated changes in plasma volume (% APV) were

not significantly different between the two exercise

groups when the 0 min value was used as reference

(fig. 4). After 15 min of exercise a difference (P < 0.05) in

PV was evident between the exercise groups (-10.6 :!: 1.9
and -7.0 + 1.1% for No Glu/Ex and Glu/Ex, respectively).

There was no significant difference during the remainder
of exercise as the No Glu/Ex PV more or less stabilized,

while that of Glu/Ex continued to decline. At 70 min the

No Glu/Ex and Glu/Ex PV were not different (-12.3 + 2.2

and -12.1 + 2.1%), respectively; at R + 10 both groups'

PV were still below their respective 0 min values

(-4.9 + 1.6 and -4.5 -1-1.9%, respectively). The Glu/Rest

PV showed a slight initial increase (NS), followed by a

return to baseline. Prior to exercise all three groups

experienced a decline in PV; that for Glu/Ex was signif-

icant (P < 0.05), and it began at a more hemodiluted level
than those for Glu/Rest or No Glu/Ex.

Plasma Electrolytes

Sodium concentration did not differ between the two

exercise groups at rest or during exercise (fig. 5). Within

the first 15 min of exercise[Na +] rose moderately

(P < 0.05) in both groups, but did not rise above the corre-

sponding level for Glu/Rest. For the remainder of exercise

both exercise groups showed small increases in Na ÷ the

increases for No Glu/Ex were greater than the correspond-

ing Glu/Rest values at 45 and 70 min. Sodium returned to
the 0 min levels at R + 10 for both exercise groups.

Sodium concentration for Glu/Rest showed little change

during the experiment.

Table 5. Body weight changes over the course of water immersion and exercise or rest, with and without glucose
beverage (mean + SE)

Treatment Preimmersion Postimmersion Immersion Postexercise Beverage ABOdy wt,

body wt, kg body wt, kg urine volume, body wt, kg volume, liters exercise, kg a
liters/4 hr

Glu/Rest 78.43 + 2.96 77.48 + 2.85 0.99 + 0.16 77.88 + 2.86 0.46 + 0.01 -0.06 + 0.02

No Glu/Ex 78.15 + 2.91 76.96 + 2.88 a 1.27 + 0.18 76.66 + 2.89 ab none -1.30 + 0.04 bc

Glu/Ex 78.35 + 2.96 77.31 + 2.96 a 108 + 0.18 76.39 + 2.92 ab 0.46 -1-0.02 -1.37 + 0.17 bc

aBody wt. exercise values were calculated by finding the difference between the postimmersion and postexercise
body weights and then correcting the Glu/Rest and Glu/Ex values for the volume of glucose beverage consumed.

bSignificantly different from initial value for that trial (P < 0.05).

CSignificantly different from rest at this corresponding time (P < 0.05).
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Table6.Hemoglobinandhematocritduringcontrol,70minof exercise, and recovery for the three treatments
(mean + SE)

Time, min

Treatment -25 0 15 45 70 + 10

Hemoglobin, mg/dl

Glu/Rest 15.4+0.7 15.5+0.5 15.4+0.5 15.5+0.7 15.7+0.6 15.5+0.5

No Glu/Ex 15.8+0.6 16.0 + 0.5 b 17.0 + 0.5 ab 17.1 +0.4 ab 17.3 + 0.4 ab 16.5 + 0.4 ab

Glu/Ex 15.5+0.4 16.0 + 0.4 b 16.7 + 0.4 ab 17.1 +0.4 ab 17.5 + 0.5 ab 16.6+0.5 _

Hematrocrit, %

Glu/Rest 44.8 + 1.4 45.4 + 1.4 45.0 + 1.4 45.1 + 1.5 45.3 + 1.5 45.2 + 1.5

No Glu/Ex 45.1 + 1.4 45.6 + 1.3 48.1 _+1.3 abc 48.0 + 1.3 cbc 48.2 + 1.3 ab 46.6 + 1.3 a

Glu/Ex 44.8 + 1.1 45.6 + 1.1 a 47.2 + 1.1 _ 47.4 + 1.2 ab 47.9 +- 1.2 ab 46.2 + I. 1a

aSignificantly different from initial value (0) for that trial (P < 0.05).

bSignificantly different from Rest at this corresponding time (P < 0.05).

CNo Glu/Ex is significantly different from Glu/Ex at this corresponding time (P < 0.05).
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Figure 4. % A Plasma volume (._+SE)during control, 70 min of exercise, and after 10 min recovery with subjects ingesting

glucose beverage or not, and at rest after glucose ingestion, all following 4 hr water immersion. §No Glucose is

significantly different from Glucose at this corresponding time (P < 0.05). t Significantly different from Rest at this

corresponding time (P < 0.05). "Significant/), different from initial value (0) for that trial (P < 0.05).
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Potassium concentration in No Glu/Ex showed a small

increase (P < 0.05) between -25 and 0 min (fig. 5).

Potassium was significantly different (P < 0.05) between

the exercise groups for the duration of exercise. There was

no difference between the three experimental groups at

0 min, but by 15 min the two exercise groups had

increased concentrations with No Glu/Ex [K +] rising sig-

nificantly higher (P < 0.05) than that for Glu/Ex. For the

remainder of exercise both exercise groups' [K+]

remained elevated above the corresponding Glu/Rest val -

ues and they were significantly different (P < 0.05) from

each other. Both groups showed marked drops in [K +] at

R + 10, with No Glu/Ex remaining elevated (P < 0.05)
above Glu/Ex, Glu/Rest, and its' own 0 min value. The

Glu/Ex [K +] returned to control level at R + 10. Potas-

sium concentration declined steadily during Glu/Rest and

was significant (P < 0.05) after 45, 70, and +10 rain.

Plasma osmolality for the exercise groups did not differ

during the exercise period. Both osmolalities rose
(P < 0.05) within the first 15 min of exercise, and then

remained relatively constant for the remainder of exercise.

At 70 min the No Glu/Ex osmolality was higher

(P < 0.05) than the corresponding value for Glu/Rest. At

R + 10 both groups' values dropped with Glu/Ex osmo-

lality remaining elevated (P < 0.05), and that for No

Glu/Ex returning to the control level. Osmolality for the

Glu/Rest group remained unchanged during the

experiment.

Rectal and Skin Temperatures

There was no significant difference in mean rectal tem-

peratures between the two exercise groups (fig. 6, upper

panel). At 0 min there was no difference between the

three groups: values for Glu/Rest, No Glu/Ex, and Glu/Ex
were 36.86 + 0.09, 36.82 + 0.05, and 36.71 + 0.05 °C,

respectively. After 10 min of exercise both exercise

groups' Tre had risen (P < 0.05) above their respective
0 min values, and by 20 min were higher (P < 0.05) than

the corresponding Glu/Rest value. The two Tre continued
to increase in a linear manner for the duration of exercise

and, at 50 min, Glu/Ex group showed an attenuation in the

rate of increase in rectal temperature (P < 0.05). This
attenuation was maintained for the remainder of exercise

giving final Tre values (P < 0.05) of 38.60+ 0.11 and
38.22 + 0.17 °C for No Glu/Ex and Glu/Ex, respectively.

Both exercise groups' Tre decreased at R + 10; Glu/Ex
declined (P < 0.05) more than No Glu/Ex (to 37.81 :t: 0.21

and to 38.29 + 0.11 °C, respectively). Rectal temperature

with Glu/Rest declined linearly over the entire period

becoming significant at 40 min (P < 0.05), and reaching a

final temperature of 36.57 + 0.12 °C at R + 10.

Similar responses in the change in rectal temperature

occurred as with the absolute temperature responses

(fig. 6, lower panel); there was no difference in ATre
between the two groups during exercise, but at R + 10

there was a significant difference (P < 0.05) in ATre in
the two exercise groups.

Mean skin temperature overall was not significantly dif-

ferent between the exercise groups (fig. 7, upper panel).

The -10, 0, and 10 min exercise values were higher

(P < 0.05) for No Glu/Ex than for Glu/Ex. The -10 and

0 min values of No Glu/Ex were also higher than Glu/Rest

group at those corresponding points (P < 0.05). Both

exercise groups Tsk rose rapidly for the first 20 rain of

exercise and then increased more slowly for the remainder
of the exercise bout. From 50 min until the end of exercise

No Glu/Ex Tsk remained higher (P < 0.05) than that for

Glu/Ex. End exercise mean skin temperatures were
32.40 + 0.20 and 31.98 + 0.28 °C for No Glu/Ex and

Glu/Ex, respectively. Glu/Ex R + 10 mean skin tempera-

ture fell to 31.48 + 0.39 °C (P < 0.05), but No Glu/Ex Tsk

was unchanged at 31.98 °C. Glu/Rest mean skin tempera-

ture was unchanged throughout the experiment.

There was no significant difference in A mean skin tem-

perature between the two exercise groups (fig. 7, lower

panel). Both increased rapidly (P < 0.05) over the first
20 min of exercise (P < 0.05) and then increased more

slowly thereafter. End exercise A Tsk were 1.57 + 0.20
and 1.83 + 0.10 °C for No Glu/Ex and Glu/Ex, respec-

tively. At R + 10 No Glu/Ex A Tsk remained at the
70 min level, 1.57 + 0.30 °C, while that for Glu/Ex

decreased to 1.32 + 0.30 °C. Glu/Rest A Tsk was
unchanged throughout the experiment.

Calf, Arm, and Forearm Sweat Rates

The rate of increase in mean calf sweat rate was not dif-

ferent during exercise in the exercise groups (fig. 8, upper
panel). By 15 min of exercise calf sweating had risen sig-

nificantly (P < 0.05) and both rates were greater

(P < 0.05) than the corresponding value for Glu/Rest.

Both rates continued to increase throughout exercise with

an apparent leveling off at 65 min; end exercise calf sweat
rates were 0.07 + 0.01 g • cm -2 • min -1 for both groups.

Giu/Rest calf sweat rate was unchanged over the 70 min

period.

Mean arm sweat rate was not different between the two

exercise groups (fig. 8, middle panel); both rates rose

(P < 0.05) throughout exercise. After 15 min of exercise

both rates had risen (P < 0.05) above their 0 rain levels

which were also higher (P < 0.05) than the cor-

responding rate for Glu/Rest. By 65 rain of exercise

both rates reached steady state at 0.09 + 0.01 and
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0.08 ± 0.01 g • cm -2 • min -1 for No Glu/Ex and Glu/Ex,

respectively. Glu/Rest arm sweat rate was unchanged over

the 70 min period.

Mean forearm sweat rate was not different between

the exercise groups (fig. 8, lower panel), and it also
increased during exercise. At 15 rain of exercise both

rates had increased (P < 0.05) above their respective

0 min levels, as well as above (P < 0.05) the correspond-

ing value for Glu/Rest. At this point there was attenuation
of the Glu/Ex rise and, at 30, 40, and 45 min, the differ-

ence from No Glu/Ex was significant (P < 0.05). By
65 min, both exercise rates had leveled off at 0.06 + 0.01

and 0.05 + 0.0t g- cm -2 • rain -1 for No Glu/Ex and

Giu/Ex, respectively. Again, forearm sweat rate for

Glu/Rest was unchanged during the 70 min period.

Peripheral (Temporal) Blood Flow Parameters

Blood velocity was not significantly different between the

two exercise groups (fig. 9, upper panel); both increased

(P < 0.05) by 10 rain of exercise and, from 30 rain, No

Glu/Ex appeared to decline while Giu/Ex remained rela-

tively constant. At 70 min of exercise blood velocity for
No Glu/Ex and Glu/Ex had reached 1.51 + 0.24 and

1.67 ± 0.21 Hz • 102, respectively; both groups showed

small decreases (P < 0.05) at R + 10. Blood velocity for

Glu/Rest was unchanged during the experiment.

Blood volume was not different between the two exercise

groups (fig. 9, middle panel); both showed steady

increases (P < 0.05) during exercise, and from min 50 No

Glu/Ex volumes climbed more steeply resulting in 60 and

70 min values significantly higher (P < 0.05) than corre-

sponding values for Glu/Ex group. At the end of exercise
volume levels were 0.45 + 0.05 and 0.35 + 0.02 Hz • 10 2

(P < 0.05) for No Glu/Ex and Glu/Ex, respectively. Both

groups' volumes declined by R + 10, yet still remained
elevated (P < 0.05) over control levels and over the corre-

sponding value for Glu/Rest. Glu/Rest blood volume was

also unchanged during the experiment.

Blood flow did not differ significantly between the exer-

cise groups (fig. 9, lower panel); flows increased
(P < 0.05) within the first 10 rain of exercise and after

30 min they both leveled off. After 70 min of exercise
blood flows for No Glu/Ex and Giu/Ex were 35.1 + 5.4

and 33.3 ± 3.4 ml - min-i. 100 g-l, respectively. At

R + 10 both flows remained elevated (P < 0.05) above

their control levels and above the corresponding value for

Glu/Rest. Glu/Rest flow was unchanged during the

experiment.

Discussion

The purpose of these experiments was to determine the

effect of elevated blood glucose via drinking 2 g/kg body

wt. of a concentrated glucose beverage (33%) on ther-

moregulatory responses (rectal temperature, skin tempera-

ture, and sweat rate) to horizontal, supine cycle ergometer

exercise (60% of peak VO 2) of hypohydrated (via water

immersion) male subjects. As a control, the same subjects
were similarly hypohydrated but were given nothing to

drink prior to exercise. Cardiovascular, respiratory, and

blood factors were studied to provide additional informa-

tion for interpreting findings. It appears from the data that

the effect of glucose on human exercise thermoregulation

is equivocal, Absolute rectal temperature data indicate

that glucose might produce an attenuation in the rise of

core temperature with exercise. However, when the net

change in rectal temperature at the various points was cal-

culated, the two exercise groups were identical in their

responses. Absolute and A mean skin temperature results

also suggested different conclusions. Glucose consump-

tion produced lower skin temperatures prior to exercise,

and this pre-exercise differential was maintained for the

majority of exercise. When calculated as change in skin
temperature with exercise, it was found that there was no

difference in skin temperature response with glucose. In a
few cases, subject skin temperature was monitored before

and during drinking, in addition to that stipulated in the

protocol 10 min prior to exercise initiation. The data

showed a downward temperature transient. Perhaps glu-

cose consumption or drinking in general, modulates skin

temperature possibly through a reduction in skin blood

flow as a result of increased splanchnic blood flow

(Rowell, 1973, 1993).

The rectal temperature responses seen here are in contrast

with the results of Kruk and colleagues (1987). When

compared with the control group (24 hr fasted), elevated

blood glucose caused a reduction in the exercise-induced

rise in both rectal temperature (by 0.9 + 0.11°C) and more

importantly muscle temperature (by 0.9 ± 0.16°C). Fur-
thermore, when hypoglycemia or glucopenia was induced,

ATre was significantly larger (1.33 ± 0.18 ° C and 1.36 +
0.12°C, respectively) than that of the control group (0.94

_+0.10°C) (Tudejska and Nazar, 1977). It is worth men-

tioning that the group receiving intravenous glucose in

Kruk's study (1987) demonstrated RER values above 1.0

during exercise, significantly higher than those of either

the FFA or control group. Although blood glucose was
significantly elevated in the exercise glucose group above
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that of the exercise control group in the present study,

both groups showed similarly elevated RER levels imply-

ing equal dependence on carbohydrate, whether endoge-

nous or exogenous, during exercise (Dill et al., 1932;

Christensen and Hansen, 1939). It is possible that the

meal consumed by all subjects prior to water immersion,

almost exclusively carbohydrate, fully saturated muscle

glycogen stores providing ample carbohydrate availability
for exercise in the exercise control group. Coyle and

associates (1985, 1991) found that a high carbohydrate
meal, similar to that used in the present study, ingested

4 hr. prior to moderate exercise (-70% of peak uptake)
produced elevated RER levels (0.90-0.95); individuals

who had fasted for 16 hr. showed an intermediate (even

balance between CHO/protein and FFA) RER

(0.85--0.87). Since the subjects in the present study ate a

high-carbohydrate meal an average of 5.5 hr. prior to

exercise testing, it is probable that the RER for the exer-

cise control group was elevated for this reason. Therefore,

any metabolic effects postulated for explaining differ-

ences in thermal responses for the studies using dogs as

subjects (Turlejska and Nazar, 1977; Kruk et al., 1987)

would not be possible here due to the identical oxygen

uptake observed for the exercise groups and the confound-

ing fuel utilization patterns induced in these human

subjects.

Glucose appears to affect sweat production in exercising

subjects. The farther the sweat monitoring sight was from

the exercising muscle, the greater the degree that glucose

attenuated the rise in sweat rate at that sight. Forearm

sweat rate showed the greatest attenuation, and at certain

points during exercise this effect was significant. Whole

body sweat rate, as suggested by the change in body

weight over exercise, however, showed no significant

difference between the two exercise groups. Furthermore,

none of the other physiological indices typically associ-
ated with the reduction or impairment of sweating, includ-

ing elevated osmolality and declining plasma volume,

showed significant differences between the exercise

groups (Nadel et al., 1980; Fortney et al., 1981b, 1984).

The calculated % change in plasma volume for both exer-

cise groups indicated the typical early drop followed by a
more moderate decline over exercise (Rowell, 1974;

Smith et al., 1976; Harrison, 1985). The only difference

between the two groups was after 15 min of exercise

where the decline in plasma volume for the glucose-

exercise group was not as rapid. This might reflect that

some volume of the beverage had entered the vascular

space and, because of the osmotic nature of glucose,
produced a larger water retaining capacity of the vascu-

iature not normally associated with this point in exercise.

In a like but opposite manner, the disappearance of

glucose from the vascular space from 15 min to 45 min

may have contributed to the more rapid decline in plasma

volume for the glucose-exercise group over this time.

Osmotic changes of the Glu/Ex group mirrored those of

the exercise control group over the course of exercise.

Sodium ion concentration showed similar consistency

between the exercise groups. Potassium ion concentration,

though not affecting overall osmolality, was significantly

different between the exercise groups. The predictable rise

in [K +] with exercise was apparently attenuated in the

Glu/Ex group, and showed a significant drop in the
Glu/Rest group. Since elevations in [K +] with exercise

may be linked to elevated muscle glycogenolytic activity

(Harrison, 1985) as well as hemoconcentration, perhaps

the attenuation observed as well as the sharp drop in con-

centration in the resting control group, is related to the use
of exogenous CHO by muscle tissue and reduced

glycogenolysis.

Cardiovascular indices of vascular volume distribution

during exercise namely heart rate, and the blood pressure

quantities both measured and derived, indicated similar

and predictable physiological adaptations for the two

exercise groups. The rising heart rate and declining dias-

tolic pressure and, as a consequence, declining mean arte-
rial pressure are consistent with peripheral shunting of

blood flow and "cardiovascular drift" (Krogh, 1912;

Ekelund and Holmgren, 1967; Rowell, 1974). Finally,

laser Doppler measurements of peripheral blood flow

changes provided no suggestion of significant differences

in vascular adaptation between the two exercise groups.

In summary, elevated blood glucose may have some

effect on human exercise thermoregulation, but this effect

is not clear from these experiments. Basal levels of some

components (skin temperature and sweat rate) may be

altered by elevated blood glucose. Another possible effect
may be an alteration in the threshold for response of

parameters affecting temperature and sweat rate rather

than variations in the gain of the responses themselves.

Sweat production may be affected by elevated blood glu-

cose; the slope of the response to thermal inputs was the

same, but the threshold for the response had been shifted.

Cardiovascular responses indicated that the same level of

peripheral vasodilatation occurred for both exercise

groups producing cardiac chronotropic adaptation and

systemic pressure changes. Because of the structure of the
experiment it was not possible to observe the effect of

altered metabolism on exercise thermoregulation. There-

fore, any comments relating to comparing or contrasting

human results and that of other mammalian species would

not be appropriate. Future research in this area would be

more profitable by reducing the number of variables pre-

sent between the control and test experiments through

improving and/or broadening the scope of the control

25



experimentsthemselves.Tobetterdelineateametabolic
thermaleffect,it mighthavebeenusefulinthisstudyto
fastthesubjectspriortowaterimmersion.A secondcon-
trolexperimentcouldhaveutilizedasecondbeverage
withthesamewatercontentasthe33%glucosebeverage
tobetterseparatetherehydratingeffectsfromthemeta-
boliceffects.Theinclusionofaninsulinassaywouldhave
providedfurtherinformationastothenatureoftheblood
glucoseconcentrationdeclineseenduringtheGlu/Ex
groupexercisephase,andthesignificantriseinblood
glucoseconcentrationduringthepost-exerciserestphase.
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Appendix

Human Research Consent Form

Part I

TITLE: The Effects of Oral Glucose Administration With Exercise On Men After Water

Immersion; HR 96

A. Investigators

Principal Investigator:

Alan S. Dearborn

Department of Biology

San Francisco State University
San Francisco, CA 94132

(415) 604-3341

Co-Investigators:

John E. Greenleaf, Ph.D.

Life Science Division (239-11)
NASA Ames Research Center

Moffett Field, CA 94035-1000

San Francisco State University Faculty Contact:

Andrew C. Ertl, M.S.

Dept. of Physical Education

University of California
Davis, CA 95616

Paul R. Barnes, Ph.D.
338-2962

B. Purpose

The purpose of this investigation will be to examine the effect of elevated blood glucose, due to the intake of a glucose-
containing beverage, on thermal responses to exercise before and after water immersion.

C. Nature of Tests and Experiment

By going into space we expose our bodies to an environment that is unlike our own. We can compensate for the major

life support factors, but we haven't been able as yet to compensate for the effects produced by the loss of gravity. The

general effect we will be dealing with in this experiment is a decrease in plasma volume, the fluid portion of blood con-

sisting mostly of water, resulting from a general fluid shift towards the chest and head. This can lead to a failure of the

body's ability to regulate temperature during activity and the inability to work at peak performance. It has been sug-
gested by results from human and animal research that consumption of electrolyte/carbohydrate containing beverages

prior to activity might alleviate symptoms of dehydration, maintain normal fluid balance in the body tissues, supply more

energy to the muscles, and thereby maximize work efficiency and the health of the astronaut.

It has been determined that water immersion is an effective means of simulating zero-gravity and thus stimulates a num-

ber of the physiological adaptive processes related to space travel, most notably a reduction in plasma volume. It has

been shown that the first 2-4 hours of immersion produce the most marked changes in plasma volume. With this condi-

tion being met, any fluid intake should be responded to in a representative way of how astronauts will respond after three

days in space. Since glucose (a simple sugar) is the body's circulating carbohydrate molecule which supplies energy to
the brain and tissues, it would be of value to see how immersion affects your plasma glucose levels, how plasma glucose

levels are altered by drinking a glucose containing beverage, and how glucose levels are affected by exercise. Further-

more, by monitoring your body temperature responses to exercise, with and without drinking the glucose beverage, we
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may determine if the drink helps to keep your body cooler during exercise. With all this in mind, we will examine the

following:

(a) Plasma volume changes as a result of water immersion.

(b) Your body's response to an orally administered glucose solution before and after immersion as measured by plasma

glucose levels.

(c) Your body's response to exercise in terms of fuel choice, temperature changes, and blood constituents in the pres-

ence of the orally administered glucose solution before and after immersion.

D. Manner in Which Tests or Experiment Will Be Conducted

You will be asked to come to Ames Research Center, Bldg. 239, Room 214, three or four times approximately two

weeks prior to the water immersion experiments. This will allow you to familiarize yourself with exercising horizontally

on a bicycle ergometer, and to carry out pre-immersion experiments which will provide information for comparison with
post-immersion data (refer to fig. A- 1). On one occasion your oxygen consumption while exercising at your maximum

capacity on the ergometer will be tested. During this procedure your heart rate, blood pressure, and expired air will be

monitored. On another occasion you will take an Oral Glucose Tolerance Test (oGTr) consisting of consuming a glu-

cose beverage while resting. Blood samples will be taken at intervals via a catheter to observe changes in blood glucose

and other constituents. Rectal temperature and skin temperature will also be monitored. You will also be asked to do two

six-hour chair-resting experiments followed by exercise at 60-65% of your previously determined maximum oxygen

consumption ( _'O 2 max). The exercise will be preceded by consumption of a glucose beverage or nothing. These tests

will be done to determine your ambulatory (before water immersion) thermal responses to exercise with and without glu-

cose consumption. For these two tests you need to arrive at Ames at 0730 hours in a fasted condition. The exercise test
protocol (duration, blood draws, physiological measurements) will be the same as that of the post-immersion exercise

tests which are described later. Your pre-exercise plasma volume will be determined by the Evans blue dye method (refer

to Method Explanation (b) and Forseeable Inconvenience (6)).

The water immersion test days will require that you arrive at Ames Research Center at 0730 hours in a fasted condition.

You will be given a light meal of toast, jelly, and a beverage. You will urinate and be weighed. At 0900 hr you will enter

the immersion tank where you will remain for 6 hours. Water temperature is maintained at 34°C (isothermic). At 1500 hr

you will exit the tank with assistance and be weighed again. You will be carried by stretcher to Rm. 214 for the exercise

phase. At 1520 hr a catheter will be inserted into a vein in your arm. At this time a preliminary blood sample will be

taken, Evans blue dye will be injected into you, and after 10 min another blood sample will be taken. This procedure

allows the measurement of your plasma volume (the fluid phase of your blood) which allows us to be sure that you are

AmbulatoryExperiments
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Figure A- 1. General scheme of study. ( _ ) Signify blood draws or Evans blue injection.
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dehydrated adequately. You will then consume the glucose beverage and rest for 30 min. At approximately 1615 hr you
will begin exercising at 60--65% of your previously determined VO 2 max, with a duration of 70 min. This will be fol-

lowed by a monitored 20 rain recovery period. Blood will be drawn via the previously inserted catheter at intervals dur-

ing exercise and recovery for analysis. You will be allowed to leave Ames at roughly 1745 hr.

A second water immersion test will be conducted in another week. This will be followed by an exercise test following

the above protocol; however, it will not be preceded by consumption of glucose. This will provide an internal control for

comparison to the glucose treatment.

A third and final immersion procedure will be conducted for each subject on another week. This will be followed by an

OGTI" in a resting, monitored state. This will provide information as to the deconditioning effects of water immersion.

The results of this test will be compared to those of the ambulatory test of the same type.

Method Explanation

(a) Blood Sampling, Analysis, and Requirements

Blood sampling will be done via an in-dwelling catheter in an antecubital vein inserted by an experienced nurse. Sam-

pling will be done at Texercise = --45 (Plasma blank), -35 (Evans blue, constituents), 0, +45, and +68 min. Blood will

also be drawn at Trecovery = +5 and +15 min. The T e -35 draw will require 12 ml, with the T e -45 and remaining draws
taking 6 ml of blood each. Total blood required for each phase (ambulatory and treatments) will be 48 ml. The OGTT

will require about 10 ml. Total blood required for the study: (48 ml x 4) + (10 ml x 2) = 212 ml.

(b) Plasma Volume Determination

A plasma volume measurement will be made pre- and post-immersion, and prior to each exercise test phase. This will be

done utilizing the Evans blue dye (T-1824) dilution technique. An initial 6 ml of blood will be drawn for use as a plasma
blank. Then a 3.5 ml volume of a 0.1% Evans blue dye solution (T-1824 in isotonic saline) is injected. After a 10-min

equilibration period, a 6 ml blood sample is drawn.

(c) Mean Body Temperature

Skin temperature during the experimental procedures will be recorded every two minutes at six sites (upper arm, fore-

arm, chest, back, thigh, and calf) with Yellow Springs Instruments thermistors using prototype optimum air-flow holders

(Greenleaf 1974). Core temperature will be measured using a flexible Yellow Springs Instruments rectal probe inserted

to a depth of 12 cm.

E. Foreseeable Inconvenience, Discomfort, and Risks

1. Skin preparation for electrodes.

2. Venipunctures for catheter insertion. There is a small risk of bleeding, bruising, or infection at the site of the needle.

3. Possible nausea, dizziness, and fainting during the blood draws.

4. During the maximal oxygen uptake test: discomfort such as breathlessness, fatigue, muscle soreness, dizziness, and a
remote chance of fainting. Skipped heart beats (arrhythmias) occur in 5-10% of healthy subjects; no harm but may be

felt by the subject. Chest pain, occurring as a tight feeling under the breast bone or radiating down the arm, may also
cause or be only evident as an ECG change (ST depression); observed in less than 1% of normal persons. Abnormal

ECG response to exercise; a fall in systolic pressure with an increase in exercise load; a rise in diastolic blood pressure

20 mmHg from resting state; systolic blood pressure above 220 mmHg. Abnormal ECG response to exercise; frequent
multiform premature ventricular beats; indications of a bundle branch block or A-V block (2 ° and 3°). If such abnormal

ECG recordings or blood pressure responses occur and warrant concern for the subjects safety, the exercise test will be

terminated immediately.

5. During exercise bout: discomfort such as general fatigue.

6. The Evans blue dye has been used in human research for more than sixty years and there are no data to suggest that

using it for measuring plasma volume represents a risk to humans. However, like many other dyes and drugs, Evans blue
has been found to cause changes in cells (mutagenic effects) in certain animal species when the dye was given to them in
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dosesseveralhundredtimesthatusedinhumans.Thedyetechniquemay,onrareoccasions,impartabluishtinttothe
skinthatdisappearswithinafewdays.
7. Initialdiscomfortofrectaltemperatureprobe.

8. Possiblegastricupsetfrombeverageingestion.

9. Smoking,drinkingalcoholicbeveragesorcaffeine-containingbeveragesorthetakingofanydrugswillnotbe
allowedduringthestudy.

10.Subjectswillbeexpectedtoeatallthefoodtheyaregiven.
11.Unforeseeablelaboratorymishapsthatmayrequireanotherbloodsamplebeingdrawn.

F. Rights to Withdraw from the Study; Hazards Associated With Withdrawal

You have the right to withdraw from the study at any time for any reason, although we hope you will not volunteer for

the study unless you intend to complete it. Walking out of the bedrest facility after experiencing a period of water

immersion may be hazardous to your health, such as weakness, unsteadiness, or light headedness. You may leave after

being given medical advice.

G. Answers to Questions

You may receive answers to any questions related to this study that occur before, during, or after the study, by contacting
the Principal Investigator, Alan Dearborn at (415) 604-3341 or Dr. John Greenleaf at (415) 604-6604.

H. Remedy in the Event Of Injury

You will be covered by Worker's Compensation insurance during the course of your participation in this study. If you

sustain an injury caused by this study, the benefits you will receive are those currently provided under the Worker's

Compensation law in California. You can not sue your employer for benefits other than those provided by this Compen-
sation because the law makes Worker's Compensation your only remedy against him. You may have other remedies

against persons or organizations other than your employer depending on the circumstances of your injury.

I certify that the series of tests for which is to serve as a subject has been

explained to him in detail and that he understands what is involved.

Signature of Principal Investigator Date

Signature of Responsible Ames Researcher
Date

Signature of Medical Monitor
Date
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Human Research Consent Form

Part II

TO THE TEST SUBJE(_T; Read Part I carefully. Make sure all your questions have been answered to your satisfaction.
Do not sign this form until Part I has been read by you and signed by the Principal Investigator and Government Medical

Monitor. You will receive a copy of this consent form.

A. I, , agree to participate as a subject in the tests and experiments described in
Part I of this form.

B. I am aware of the possible foreseeable harmful consequences that may result from such participation, and that such

participation may otherwise cause me inconvenience and discomfort as described in Part I.

C. My consent has been freely given. I may withdraw my consent, and thereby withdraw from the study, at any time. I

understand (1) that the Principal Investigator may request my employer to dismiss me from the study if I am not con-

forming to the requirements of the study as outlined in Part I; (2) that the NASA Medical Monitor may request my

employer to dismiss me from the study if, in his opinion, my health and well-being are threatened; and (3) that the Facil-

ity Safety Manager may terminate the study in the event that unsafe conditions develop that cannot be immediately cor-

rected. I understand that ifI withdraw from the study, or am dismissed, I will be paid for the time served up to the point

of my departure, but not thereafter.

D. I am not releasing NASA from liability for any injury arising as a result of these tests. I understand that if I am

injured in connection with this experiment, I am covered under California law by Worker's Compensation. If I receive

worker's Compensation benefits, I cannot sue my employer because the law makes Worker's Compensation my only
remedy against him.

E. I hereby agree that all records collected by NASA in the course of this experiment are available to the Medical

Monitor and the Principal Investigator and Co-investigators.

F. I have had an opportunity to ask questions and I have received satisfactory answers to each question I have asked.

Signature of the Test Subject Date

Address (Area Code) Telephone No.

City, State, Zip Code
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Public reporling burden ,'or mis collection ot information ,'s es¢imated to average 1 hour per response, including the time tOT reviewing instructions, searching ex*'st_ng data eou_es,

gathering and maintaining the date needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pr(; act (0704-0188), Washington, DC 20503.
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